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Ground state of a dipolar crystal
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We provide some of the strongest evidence to date that the ground state structure of an infinite collection of
point dipoles with hardcore sphere interactions is body-centered tetragonal. The structure with the next highest
binding energy is not face-centered cubic; a particular honeycomb structure has lower energy.

PACS number~s!: 61.20.2p, 83.80.Gv
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I. INTRODUCTION

One of the most fundamental, the most interesting a
also the most difficult tasks in understanding a physical s
tem is the determination of the ground state structure. M
work has been carried out to better understand the gro
state structure in dipolar systems such as electrorheolog
~ER! and magnetorheological~MR! fluids @1–16#, both in the
case where one dimension is finite and where all three
mensions are infinite. In this study we take the simpl
model of such a system and try to establish more conv
ingly than heretofore the ground state structure in the c
where all dimensions are infinite.

All previous studies@1–15# indicate that the thermody
namic ground state of a dipolar system is body-centered
tragonal~bct! rather than another crystalline structure. W
do we consider further work along these lines warranted?
answer this question we need to briefly review the theoret
evidence presented to date. These fall into two basic clas
The first class consists of comparing the exact energy
handful of infinite structures, e.g., bct, face-centered cu
~fcc!, etc., as was carried out in Ref.@1#. There is no guar-
antee that the ground state structure has been inclu
among the few that have been studied. Assuming the st
ture is crystalline, there are 14 different kinds of Brava
lattices, and 230 different space groups of a Bravais lat
and its basis@17#. Most of these groups allow for rescaling
and changes of orientation, as well as an infinite numbe
basis representations. The point is that the;10 structures
which have been considered for ground state candidates
by no means exhaustive.

The second class of theoretical studies seeks to perf
simulated annealing to determine the ground state. Here
generally been restricted to a small number of degree
freedom, e.g., 122 particles in the case of Ref.@13#, or a
small number of rigid, uniform chains of particles~without
gaps!, such as the 16 chains of Ref.@2#. In these studies the
ground state of the finite system is compared with the
structure, e.g., by a computation of bct order parameters,
one sees indications that the bct structure is being
proached as the temperature goes to zero. The concern
these studies is that the number of degrees of freedom
be insufficient to reach the thermodynamic ground st
structure. It turns out, for example, that a cloud of ions sp
ning in an ion trap has a thermodynamic ground state wh
PRE 611063-651X/2000/61~2!/2099~4!/$15.00
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is simple cubic. Amazingly, however, some 105 ions are re-
quired before that structure appears@18#.

An interesting work outside of these two classes of st
ies involved simulations with a fairly large number of dipol
particles: 10 000@15#. In this study a large fraction of par
ticles were seen to have nearest neighbors in an approxim
bct arrangement; however, this was never more than ab
30%. With so many degrees of freedom, the problem
metastability was severe and, for example, the average c
dination number never reached 6.~The coordination numbe
for an infinite bct structure is 10.! Nevertheless this study
provided some complementary evidence that the ground s
of a dipolar system is bct.

The model we will consider is one in which spheric
dipolar particles interact only via the dipole-dipole intera
tion and a hardcore repulsive term which prevents any ov
lap. The dipole moments will be taken to all point in th
same direction. All dimensions are infinite. This model co
responds at least roughly to a saturated ER or MR fluid in
limit of infinite sample thickness. The perfect alignment
the dipole moments can be considered to be the result
sufficiently strong external field. This sort of physical syste
is plagued by metastability problems~also known as ‘‘ag-
ing’’ !, making it very difficult to experimentally access th
ground state structure@16#. As we shall see, the theoretica
situation is not immune to this problem, though it has so
advantages.

II. CASE FOR GAPS

Dipolar particles tend to most easily form chains a
therefore it is natural that the structures considered to d
have been almost exclusively able to be constructed fr
straight chains with no gaps between the particles in e
chain. For example the bct and fcc structures which h
been considered are of this type.

We wish to carry out a somewhat wider search for grou
state candidates and as a first step we revisit several o
structures which have been considered before, but now a
the chains which form these structures to have gaps. By
lowing for gaps we are able to pack the chains more clos
thereby increasing the inter-chain binding energy at the
pense of reducing the intra-chain binding energy.

In Fig. 1 we show part of one layer of an fcc or hexagon
closed packed~hcp! structure. By adding layers of the form
2099 ©2000 The American Physical Society
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ABCABC••• we form the fcc structure. By adding layers
the form ABABAB••• we form the hcp structure. Thes
structures can be considered to consist of chains with
gaps.~Parts of three chains made up ofA particles are shown
in the figure.! If we put in a gaph between successive pa
ticles in each chain, while laterally moving the chains
close as possible to each other without overlapping, we fo
a family of structures with an energy per particle which c
be calculated as a function ofh. The result for the fcc lattice
is shown in Fig. 2. One might expect the energy per part
to increase monotonically withh because the binding energ
between particles in a chain is normally much greater t
between particles in different chains, because of the cha
ter of the dipolar interaction. It is therefore somewhat o
surprise to find that the energy per particle does not incre
monotonically but peaks at a gap ofh'0.16 ~in units of the
particle diameter! and then turns down. Ath5A221
'0.41, the binding energy per particle is exactly the same
in the no gap case, namely, 2.961921952~For convenience
we express the energy in units of the dipole moment squa
divided by the particle diameter cubed!. This is related to the
fact that theh5A221 structure is in fact also an fcc struc
ture, but with a different orientation. At this value ofh,
particles which were not in contact forh,A221 now be-
come in contact. Because of this, any further increase oh
does not reduce the energy per particle.

FIG. 1. The fcc and hcp structures.

FIG. 2. The energy per particle for the fcc structure with gaph
between spherical particles.
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Given that the binding energy per particle can decre
with increasing gap, yet no structures formed from cha
with gaps have been examined previously, a study of ot
structures with gaps might be useful. We looked specifica
at the following structures with gaps: hcp, bct, and hon
comb. In the latter case, the structure is a two-dimensio
honeycomb pattern of chains such that each chain has t
nearest neighbor chains, each of which is shifted vertica
by half the distance between successive particles in a ch
We found that in none of these three cases was the bin
energy greater than in the bct structure formed from cha
with no gaps. In particular, the honeycomb structure ha
maximum binding energy of 2.984 per particle with a gap
0.5993 which was larger than fcc but less than the bct ene
per particle of 3.050099872. Thus the energy of this struct
lies in between that of bct and fcc, which suggests that st
ies which have compared the bct to fcc structures includ
the effects of higher multipoles@4# or boundaries@10,11#
should be expanded to include the honeycomb structure.
also carried out importance sampling on the space of c
figurations which can be formed out of chains, with a
without gaps, as described in the next section.

III. SIMULATED ANNEALING IN GEOMETRY SPACE

We now turn to the main results of this study, whic
involve carrying out simulated annealing in the space of
candidate ground state structures for aninfinite dipolar crys-
tal. We make the modest requirement that these crystals m
be able to be formed out of uniform chains of particles p
allel to the dipole direction. While the chains can be allow
to have different spacings~by ‘‘spacing’’ we mean the dis-
tance between thecentersof successive particles in a chain
whereas ‘‘gaps’’ refers to the distance between the clos
boundaries of successive particles in a chain!, it is easy to
show that if the chain spacings are not commmensur
there can be no attractive interaction between the cha
This is seen by examining the interaction energy betwee
chain with spacingv and a particle which is a lateral dis
tancer away and shifted by a vertical distances with respect
to one of the particles of the chain@1,2,19#,

E5
16p2

v3 (
n51

`

n2K0~2npr/v!cos~2pns/v!. ~1!

Forming a second chain by replacings by s1 lv8 and sum-
ming over all integersl, one sees that the phase factors w
cancel out unless the spacingsv andv8 are commensurate
Thus, to minimize the energy per particle, we can assume
chains have commensurate spacings.

But if the spacings are commensurate, they may as w
be chosen as equal, as seen from the example of Fig. 3.
two chains on the left of the figure have spacings 2 and 1
units of the particle diameter, but it is equivalent to vie
them as 3 chains, each with the spacing 2.

We now discuss the algorithm used to carry out simula
annealing in the space of crystals made out of infinite pa
lel chains, each with the same spacing. Any such configu
tion can be constructed from a parallelogram unit cell wh
is filled with nonoverlapping chains at various locatio
within the cell, and with various relative vertical shifts. Th



its
ow
am
lg

ac
lc
ty

i
u

ai

wa
er
a
a
p
ec
n
to
h

tri
th
pe

es

.
art
the

ng

ith
ct,
ws
ent
Al-
un,
ra-
nd
ry
a

ere
y-

to

dely
, the
l-

h as
hese
ra-
re-
c-
ent
al

f the
. 6.
ac-
o-

runs
ell,
the

ng
r to
the

is
am

m

ed
ll.

PRE 61 2101BRIEF REPORTS
unit cell is then translated by the vectors which form
edges in order to generate an infinite crystal. Figure 4 sh
a possible unit cell which contains three chains. The par
eters which must be varied in the simulated annealing a
rithm area,b,u,x1 ,y1 ,x2 ,y2 ,x3 ,y3, the vertical shifts of the
chains relative to some reference plane,s1 ,s2 ,s3, and the
particle spacingv. Actually usings1 , s2, ands3 rather than
the two relative vertical shifts is redundant, though quite
ceptable. The energy per particle must be repeatedly ca
lated as a function of all these parameters, as this quanti
minimized by the procedure of simulated annealing. This
done separately for each possible number of chains per
cell, and so one is forced to stop at some number of ch
per unit cell depending on computational limitations.

The interaction energy between each pair of chains
calculated efficiently and accurately by using the Eul
Maclaurin formula to approximate the infinite double sum
a finite sum plus remainder terms. This approximation w
tailored to ensure that the error for the interaction energy
particle between two chains was of order the machine pr
sion, or about 10215. Since the interaction energy betwee
chains falls off exponentially with distance, we were able
cut off the sum over pairs of chains at a certain distance. T
distance was chosen so as to include all terms which con
uted to the interaction energy by an amount of order
machine precision or greater. Finally the internal energy
particle for each chain is simply given by22z(3)/v35
22.40411380631919/v3.

In any algorithm in which a minimization process tak

FIG. 3. An example of how chains with commensurate but d
tinct particle spacings can be relabeled as chains with the s
spacing.

FIG. 4. A possible unit cell with 3 chains, showing the para
eters which are varied in the simulated annealing work.
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place, the system is likely to get ‘‘stuck’’ in local minima
This was quite a serious problem in our simulations, in p
because of the geometrical constraints which restricted
particles from overlapping with each other or from crossi
the boundary of the unit cell.

IV. RESULTS AND SUMMARY

For practical reasons, most of our work was done w
two chains per unit cell. These configurations include b
fcc, honeycomb, and infinitely many others. Figure 5 sho
a histogram of the results of 275 runs, each using a differ
set of random numbers for the simulated annealing.
though the initial configurations were the same for each r
the initial temperature was taken so large that the configu
tions were quickly randomized. From these runs it was fou
that nearly half of the configurations ended up bct, or ve
close to bct, and no other configuration was found with
larger binding energy per particle. Certain other states w
metastable with respect to our algorithm, including hone
comb with no gap (2E'2.92), wall-like structures (2E
'2.76), and two chains with spacing 2 superimposing
form one chain with spacing 1 per unit cell (2E'2.40). In
the last case, since the cell size was variable, and the wi
separated chains with the same shift repelled one another
cell size moved off toward the maximum cutoff value a
lowed in the program.

In the case of three chains per unit cell, structures suc
bct, hcp, fcc, and honeycomb are not allowed, because t
require half the chains per unit cell shifted by a particle
dius with respect to the other half. Correspondingly, the
sult of all our three-chain simulations were wall-like stru
tures of various types. In other words the chains of differ
cells joined with each other to form quasi-two-dimension
objects, with spaces between each of these walls. None o
structures had a binding energy larger than bct. See Fig

In the case of more than three chains per unit cell, pr
tical difficulties set in because of the large number of ge
metrical constraints necessary to prevent overlaps. 36
were carried out in the range of 4 to 8 chains per unit c
and none had a binding energy larger than bct. However,
bct structure itself only appeared only two times, indicati
that more runs or longer runs would be necessary in orde
more conclusively show that bct is the ground state for
dipolar system.

-
e

-

FIG. 5. A histogram of binding energies from 275 simulat
annealing runs for structures containing two chains per unit ce
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In summary, we have examined various regular structu
formed out of chains with gaps and discovered that in so
cases gaps reduce the energy of the dipolar lattice. We fo
that a honeycomb lattice with a gap of 0.5993 has an ene
of 22.984 per particle, closer to the value for bc
(23.050) than any other state previously studied, includ
fcc

FIG. 6. A histogram of binding energies from 17 simulated a
nealing runs for structures containing three chains per unit cell
.
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(22.962). We used a method which allows one to carry
simulated annealing in geometry space. This basic met
may have applicability in a wide variety of situations
which the ground state crystalline structure is unknown.
the dipolar example considered here, the lattices consid
were actually two-dimensional with a fixed number of cha
per unit cell, but this need not be the case. After numer
independent simulated annealing runs with two chains
unit cell and a smaller number of runs with more chains
unit cell, we have obtained the strongest theoretical evide
to date that the ground state structure of a system of dip
particles with hard sphere repulsions is body-centered tet
onal.
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