PHYSICAL REVIEW E VOLUME 61, NUMBER 2 FEBRUARY 2000

Ground state of a dipolar crystal
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We provide some of the strongest evidence to date that the ground state structure of an infinite collection of
point dipoles with hardcore sphere interactions is body-centered tetragonal. The structure with the next highest
binding energy is not face-centered cubic; a particular honeycomb structure has lower energy.

PACS numbds): 61.20—p, 83.80.Gv

[. INTRODUCTION is simple cubic. Amazingly, however, some®lifns are re-
quired before that structure appefts].

One of the most fundamental, the most interesting and An interesting work outside of these two classes of stud-
also the most difficult tasks in understanding a physical sysies involved simulations with a fairly large number of dipolar
tem is the determination of the ground state structure. Muciparticles: 1000Q15]. In this study a large fraction of par-
work has been carried out to better understand the grounicles were seen to have nearest neighbors in an approximate
state structure in dipolar systems such as electrorheologicBet arrangement; however, this was never more than about
(ER) and magnetorheologicWR) fluids[1—16], both in the ~ 30%. With so many degrees of freedom, the problem of
case where one dimension is finite and where all three dihetastability was severe and, for example, the average coor-
mensions are infinite. In this study we take the simplesglination number never reached(@he coordination number
model of such a system and try to establish more convincfor an infinite bct structure is 1pNevertheless this study
ingly than heretofore the ground state structure in the casBrovided some complementary evidence that the ground state
where all dimensions are infinite. of a dipolar system is bct.

All previous studieg1-15 indicate that the thermody- The model we will consider is one in which spherical
namic ground state of a dipolar system is body-centered tedipolar particles interact only via the dipole-dipole interac-
tragonal(bct) rather than another crystalline structure. Whytion and a hardcore repulsive term which prevents any over-
do we consider further work along these lines warranted? TéP- The dipole moments will be taken to all point in the
answer this question we need to bneﬂy review the theoretica$ame direction. All dimensions are infinite. This model cor-
evidence presented to date. These fall into two basic classe€sponds at least roughly to a saturated ER or MR fluid in the
The first class consists of comparing the exact energy of dmit of infinite sample thickness. The perfect alignment of
handful of infinite structures, e.g., bct, face-centered cubi¢he dipole moments can be considered to be the result of a
(fco), etc., as was carried out in RéfL]. There is no guar- sufficiently strong external field. This sort of physical system
antee that the ground state structure has been includdd Plagued by metastability problentalso known as “ag-
among the few that have been studied. Assuming the struddd”), making it very difficult to experimentally access the
ture is crystalline, there are 14 different kinds of Bravaisground state structurgl6]. As we shall see, the theoretical
lattices, and 230 different space groups of a Bravais lattic&ituation is not immune to this problem, though it has some
and its basi§17]. Most of these groups allow for rescalings advantages.
and changes of orientation, as well as an infinite number of

bas_is representations. _The point is that th&0 structures Il CASE FOR GAPS
which have been considered for ground state candidates are
by no means exhaustive. Dipolar particles tend to most easily form chains and

The second class of theoretical studies seeks to perfortierefore it is natural that the structures considered to date
simulated annealing to determine the ground state. Here orfeave been almost exclusively able to be constructed from
generally been restricted to a small number of degrees dtraight chains with no gaps between the particles in each
freedom, e.g., 122 particles in the case of Ré&8BJ], or a chain. For example the bct and fcc structures which have
small number of rigid, uniform chains of particlémithout  been considered are of this type.
gaps, such as the 16 chains of R¢2]. In these studies the We wish to carry out a somewhat wider search for ground
ground state of the finite system is compared with the bcstate candidates and as a first step we revisit several of the
structure, e.g., by a computation of bct order parameters, arstructures which have been considered before, but now allow
one sees indications that the bct structure is being apthe chains which form these structures to have gaps. By al-
proached as the temperature goes to zero. The concern witbwing for gaps we are able to pack the chains more closely
these studies is that the number of degrees of freedom mafiereby increasing the inter-chain binding energy at the ex-
be insufficient to reach the thermodynamic ground stateense of reducing the intra-chain binding energy.
structure. It turns out, for example, that a cloud of ions spin- In Fig. 1 we show part of one layer of an fcc or hexagonal
ning in an ion trap has a thermodynamic ground state whiclelosed packedhcp) structure. By adding layers of the form
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Given that the binding energy per particle can decrease
with increasing gap, yet no structures formed from chains
with gaps have been examined previously, a study of other
structures with gaps might be useful. We looked specifically
at the following structures with gaps: hcp, bct, and honey-
comb. In the latter case, the structure is a two-dimensional
honeycomb pattern of chains such that each chain has three
nearest neighbor chains, each of which is shifted vertically
by half the distance between successive particles in a chain.
We found that in none of these three cases was the binding
energy greater than in the bct structure formed from chains
with no gaps. In particular, the honeycomb structure had a
maximum binding energy of 2.984 per particle with a gap of
0.5993 which was larger than fcc but less than the bct energy
per particle of 3.050099872. Thus the energy of this structure
lies in between that of bct and fcc, which suggests that stud-
ies which have compared the bct to fcc structures including
the effects of higher multipolep4] or boundaried10,1]]
ABCABG - - we form the fcc structure. By adding layers of should be expanded to include the honeycomb structure. We
the form ABABAB -- we form the hcp structure. These a|so carried out importance sampling on the space of con-
structures can be considered to consist of chains with nggurations which can be formed out of chains, with and
gaps.(Parts of three chains made upAparticles are shown  without gaps, as described in the next section.
in the figure) If we put in a gapn between successive par-
ticles in each chain, while laterally moving the chains as
close as possible to each other without overlapping, we form
a family of structures with an energy per particle which can We now turn to the main results of this study, which
be calculated as a function @f The result for the fcc lattice involve carrying out simulated annealing in the space of all
is shown in Fig. 2. One might expect the energy per particlecandidate ground state structures forimfinite dipolar crys-
to increase monotonically withy because the binding energy tal. We make the modest requirement that these crystals must
between particles in a chain is normally much greater thame able to be formed out of uniform chains of particles par-
between particles in different chains, because of the chara@llel to the dipole direction. While the chains can be allowed
ter of the dipolar interaction. It is therefore somewhat of ato have different spacingby “spacing” we mean the dis-
surprise to find that the energy per particle does not increasance between theentersof successive particles in a chain,
monotonically but peaks at a gap 9f=0.16 (in units of the ~ whereas “gaps” refers to the distance between the closest
particle diametér and then turns down. Atp=.2-1 boundaries of successive particles in a chaiinis easy to
~0.41, the binding energy per particle is exactly the same ashow that if the chain spacings are not commmensurate,
in the no gap case, namely, 2.961921962r convenience there can be no attractive interaction between the chains.
we express the energy in units of the dipole moment squaredhis is seen by examining the interaction energy between a
divided by the particle diameter cubedhis is related to the chain with spacinge and a particle which is a lateral dis-
fact that they=\2— 1 structure is in fact also an fcc struc- tancep away and shifted by a vertical distanswith respect
ture, but with a different orientation. At this value of ~ to one of the particles of the chaj,2,19,
particles which were not in contact foy<\2—1 now be- .
come in contact. Because of this, any further increase of 1672
does not reduce the energy per particle. E= w3 >

FIG. 1. The fcc and hcp structures.

Ill. SIMULATED ANNEALING IN GEOMETRY SPACE

n?Ko(2nmpl w)cog2mns w). 1)

n=1

Forming a second chain by replacisdpy s+Iw’ and sum-

ming over all integers, one sees that the phase factors will

€ -2.7} cancel out unless the spacingsandw’ are commensurate.

Thus, to minimize the energy per particle, we can assume the

chains have commensurate spacings.

-2.8 But if the spacings are commensurate, they may as well
/ be chosen as equal, as seen from the example of Fig. 3. The

two chains on the left of the figure have spacings 2 and 1 in

-2.91 units of the particle diameter, but it is equivalent to view

them as 3 chains, each with the spacing 2.

We now discuss the algorithm used to carry out simulated
annealing in the space of crystals made out of infinite paral-
n lel chains, each with the same spacing. Any such configura-

tion can be constructed from a parallelogram unit cell which

FIG. 2. The energy per particle for the fcc structure with gap IS filled with nonoverlapping chains at various locations
between spherical particles. within the cell, and with various relative vertical shifts. The
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binding energy

FIG. 3. An example of how chains with commensurate but dis- FIG. 5. A histogram of binding energies from 275 simulated
tinct particle spacings can be relabeled as chains with the sam@nnealing runs for structures containing two chains per unit cell.
spacing.
place, the system is likely to get “stuck” in local minima.
unit cell is then translated by the vectors which form its This was quite a serious problem in our simulations, in part
edges in order to generate an infinite crystal. Figure 4 showbecause of the geometrical constraints which restricted the
a possible unit cell which contains three chains. The paramparticles from overlapping with each other or from crossing
eters which must be varied in the simulated annealing algothe boundary of the unit cell.
rithm area,b, 6,X1,Y1,X2,Y>,X3,Y3, the vertical shifts of the
chains relative to some reference plase,s,,s;, and the IV. RESULTS AND SUMMARY
particle spacingw. Actually usings;, S,, andss rather than . )
the two relative vertical shifts is redundant, though quite ac- For practical reasons, most of our work was done with
ceptable. The energy per particle must be repeatedly calc§wo chains per unit cell. These configurations include bct,
lated as a function of all these parameters, as this quantity ¢, honeycomb, and infinitely many others. Figure 5 shows
minimized by the procedure of simulated annealing. This is? histogram of the results of 275 runs, each using a different
done separately for each possible number of chains per uret of random numbers for the simulated annealing. Al-
cell, and so one is forced to stop at some number of chaind'ough the initial configurations were the same for each run,
per unit cell depending on computational limitations. the initial temperature was taken so large that the configura-
The interaction energy between each pair of chains wations were quickly randomlged. From these runs it was found
calculated efficiently and accurately by using the Euler-that nearly half of the configurations ended up bct, or very
Maclaurin formula to approximate the infinite double sum asclose to bct, and no other configuration was found with a
a finite sum plus remainder terms. This approximation wadarger binding energy per particle. Certain other states were
tailored to ensure that the error for the interaction energy peetastable with respect to our algorithm, including honey-
particle between two chains was of order the machine precicomb with no gap ¢ E~2.92), wall-like structures {E
sion, or about 10%5. Since the interaction energy between ~2.76), and two chains with spacing 2 superimposing to
chains falls off exponentially with distance, we were able toform one chain with spacing 1 per unit celr €~2.40). In
cut off the sum over pairs of chains at a certain distance. Thighe last case, since the cell size was variable, and the widely
distance was chosen so as to include all terms which contrii€parated chains with the same shift repelled one another, the
uted to the interaction energy by an amount of order thesell size moved off toward the maximum cutoff value al-
machine precision or greater. Finally the internal energy pelowed in the program.
particle for each chain is simply given by 2¢(3)/w3= In the case of three chains per unit cell, structures such as
—2.404113806319188. bct, hep, fcec, and honeycomb are not allowed, because these
In any algorithm in which a minimization process takes require half the chains per unit cell shifted by a particle ra-
dius with respect to the other half. Correspondingly, the re-
sult of all our three-chain simulations were wall-like struc-
tures of various types. In other words the chains of different
. i cel_ls joined with each other to form quasi-two-dimensional
(X191 ), § 3Y3) 83 objects, with spaces between each of these walls. None of the
A structures had a binding energy larger than bct. See Fig. 6.
In the case of more than three chains per unit cell, prac-
tical difficulties set in because of the large number of geo-
\6 (X2¥2) 8 metrical constraints necessary to prevent overlaps. 36 runs
were carried out in the range of 4 to 8 chains per unit cell,

b and none had a binding energy larger than bct. However, the
particle spacing = ® bct structure itself only appeared only two times, indicating

that more runs or longer runs would be necessary in order to

FIG. 4. A possible unit cell with 3 chains, showing the param- more conclusively show that bct is the ground state for the
eters which are varied in the simulated annealing work. dipolar system.
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(—2.962). We used a method which allows one to carry out
simulated annealing in geometry space. This basic method
may have applicability in a wide variety of situations in
which the ground state crystalline structure is unknown. In
the dipolar example considered here, the lattices considered
were actually two-dimensional with a fixed number of chains
per unit cell, but this need not be the case. After numerous
independent simulated annealing runs with two chains per
unit cell and a smaller number of runs with more chains per
unit cell, we have obtained the strongest theoretical evidence
to date that the ground state structure of a system of dipolar
particles with hard sphere repulsions is body-centered tetrag-

FIG. 6. A histogram of binding energies from 17 simulated an-onal.

nealing runs for structures containing three chains per unit cell.

In summary, we have examined various regular structures
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